Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

fac-Bromotricarbonyl[2-(2-pyridyl-methyl)-2,3-dihydro-1H-isoindol-1-one]rhenium(I) methanol solvate

Lihui Wei* and Jon Zubieta

1-014 CST, Department of Chemistry, 111 College Place, Syracuse University, NY 13244, USA
Correspondence e-mail: Iwei@syr.edu

Received 23 September 2004
Accepted 15 November 2004
Online 22 January 2005
The structure of the title compound, $f a c-\left[\operatorname{ReBr}\left(\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}\right)\right.$ $\left.(\mathrm{CO})_{3}\right] \cdot \mathrm{CH}_{4} \mathrm{O}$, consists of neutral mononuclear molecular units of distorted octahedral geometry, with the three carbonyl donors in a facial orientation. The remaining coordination sites are occupied by the Br atom, the pyridine N atom and the ketone O -atom donor of the ligand. The molecules pack in stacks of antiparallel tapes, with a network of classical ($\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{Br})$ and non-classical ($\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$) hydrogen bonds between the methanol solvent molecule and the complex molecule.

Comment

The ligand 2-(2-pyridylmethyl)-2,3-dihydro-1H-isoindol-1one, (I), was an unexpected product from the reaction of 2-(aminomethyl)pyridine with 2-carboxybenzaldehyde, NaOH

and sodium borohydride in methanol (see scheme). Following literature procedures (Li et al., 2003; Musie et al., 2003), we
attempted to prepare 2-[N-(2-pyridylmethyl)aminomethyl]benzoic acid, (III). Although one equivalent of NaOH was added to protect the carboxylic acid group, a coupling reaction between the carboxylic acid group and the primary amine group occurred, forming intermediate (1). Condensation of the carboxyaldehyde and the amine group of (1) provided Schiff base (2), which upon reduction using sodium borohydride in methanol gave the ligand (I). Complex (II) was synthesized upon refluxing a methanol solution of the common tricarbonylrhenium(I) starting material $\left(\mathrm{NEt}_{4}\right)_{2^{-}}$ $\left[\operatorname{Re}(\mathrm{CO})_{3} \mathrm{Br}_{3}\right]$ (Alberto et al., 1994) with (I). The structure of complex (II) is shown in Fig. 1, and selected bond lengths and angles are given in Table 1.

The ligand adopts a bidentate coordination mode through the pyridine (py) N atom and the ketone O atom to form an unusual seven-membered chelate ring. The formation of the seven-membered ring illustrates the flexibility of the ligand. The ligand folds at the methylene group adjacent to the pyridine ring (C9), thus providing appropriate chelate bite distances and angles. The $\mathrm{Re}-\mathrm{C}_{\mathrm{CO}}$ bond distances [1.898 (3)1.910 (4) \AA] are consistent with those found in other tricarbonylrhenium(I) complexes (Banerjee et al., 2002; Wei et al., 2004; Moya et al., 1994). The $\operatorname{Re}-\operatorname{Br}[2.6409$ (4) Å] and $\operatorname{Re}-$ $\mathrm{N}_{\text {py }}$ [2.239 (3) \AA] bond lengths are comparable to those of sixcoordinated rhenium compounds with ligands trans to carbonyl groups (Banerjee et al., 2002; Wei et al., 2004). For example, in $\left[\mathrm{Re}(\mathrm{CO})_{3} \operatorname{Br}\left\{\left(2\right.\right.\right.$-pyridylmethyl) $\left.\left.\mathrm{NH}_{2}\right\}\right]$ and $[\mathrm{Re}-$ $(\mathrm{CO})_{3} \operatorname{Br}\{(2$-pyridylmethyl) $\mathrm{NH}(2$-thienylmethyl $)\}]$, the average $\mathrm{Re}-\mathrm{Br}$ and $\mathrm{Re}-\mathrm{N}_{\mathrm{py}}$ bond distances are 2.636 (6) and 2.190 (4) Å, respectively (Banerjee et al., 2002). The $\mathrm{C} 10=\mathrm{O} 4$ bond length in (II) $[1.248$ (3) \AA] is as expected for a $\mathrm{C}=\mathrm{O}$ double bond. The $\mathrm{Re}-\mathrm{O}$ bond distance $[2.182$ (2) \AA] lies within the range of the bond lengths between Re and ketone O atoms reported previously (Creber et al., 2000; Wang et al.,

Figure 1
A view of the structure of complex (II), showing the atom-labeling scheme and 50% probability displacement ellipsoids. [Symmetry code: (iv) $x-\frac{1}{2}, \frac{3}{2}-y, z-\frac{1}{2}$.]

Figure 2
A view showing the classical and non-classical hydrogen bonds in (II). [Symmetry codes: (i) $\frac{1}{2}+x, \frac{3}{2}-y, \frac{1}{2}+z$; (ii) $-1-x, 2-y,-z$; (iv) $x-\frac{1}{2}$, $\frac{3}{2}-y, z-\frac{1}{2}$.]

2003; Jiménez-Pulido et al., 2001). The cis and trans angles fall in the ranges $82.85(6)-98.41$ (12) and 172.06 (12)$177.57(10)^{\circ}$, respectively, showing minor deviations from the idealized octahedral limits. The steric requirements of the CO ligands are manifested in the mean $\mathrm{C}-\mathrm{Re}-\mathrm{N}$ and $\mathrm{C}-\mathrm{Re}-\mathrm{O}$ cis angle of $94.0(4)^{\circ}$, and in the mean $\mathrm{C}-\mathrm{Re}-\mathrm{N}$ and $\mathrm{C}-$ $\mathrm{Re}-\mathrm{O}$ trans angle of 174.2 (1) .

The crystal packing consists of antiparallel stacks of (II), with a network of hydrogen bonds between the methanol solvent molecule and adjacent fac-[$\left.\operatorname{ReBr}\left(\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}\right)(\mathrm{CO})_{3}\right]$ molecules (Table 2). This arrangement leads to the formation of a classical intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bond and intermolecular non-classical $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Fig. 2). The bond distances and angles of the hydrogen bonds are of the same order as those reported in other compounds containing such bonds (Bakir, 2001, 2002; Correia et al., 2001). For example, in fac- $\left[\mathrm{ReCl}\left(\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}_{2}\right)(\mathrm{CO})_{3}\right]$-$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}$ (Bakir, 2001), hydrogen bonds with $\mathrm{O}-\mathrm{H}$ and $\mathrm{O}-\mathrm{C}$ distances of 2.47-2.55 and 3.183 (7)-3.436 (7) \AA, respectively, and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ angles of $142-174^{\circ}$ are observed.

Experimental

For the preparation of ligand (I), 2-(aminomethyl)pyridine (2.88 g , 25.85 mmol) was added to a stirred solution of 2-carboxybenzaldehyde ($4.00 \mathrm{~g}, 26.64 \mathrm{mmol}$) and $\mathrm{NaOH}(1.07 \mathrm{~g}, 26.64 \mathrm{mmol})$ in methanol (50 ml). The solution was refluxed at 323 K for 2 h and turned yellow. After cooling in an ice bath, excess $\mathrm{NaBH}_{4}(1.24 \mathrm{~g}$, 32.72 mmol) was added to the solution and the yellow color slowly disappeared. After stirring for 30 min , excess HCl was added until the
pH of the solution reached 5.0. The solution was filtered and the filtrate was evaporated to dryness. The residue was purified by silicagel column chromatography using $\mathrm{CH}_{3} \mathrm{OH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5:95) to give (I) (yield $4.4 \mathrm{~g}, 76 \%$). For the preparation of (II), ligand (I) (0.07 g , $0.33 \mathrm{mmol})$ was added to a solution of $\left(\mathrm{NEt}_{4}\right)_{2}\left[\operatorname{Re}(\mathrm{CO})_{3} \mathrm{Br}_{3}\right](0.25 \mathrm{~g}$, 0.33 mmol) in methanol (30 ml) and the resulting solution refluxed for 2 h . After cooling to room temperature, the reaction mixture was evaporated to dryness. The residue was dissolved in a minimum amount of chloroform. Colorless crystals suitable for X-ray analysis were obtained from the solution after 30 min (yield $0.15 \mathrm{~g}, 80 \%$). Analysis found: C 35.6, H 2.23, N 4.76%; calculated: C 35.5, H 2.11 , N 4.88%. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): v 2026,1997,1868\left\{\nu\left[f a c-\mathrm{Re}(\mathrm{CO})_{3}\right]\right\}$.

Crystal data

$\left[\operatorname{ReBr}\left(\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}\right)(\mathrm{CO})_{3}\right] \cdot \mathrm{CH}_{4} \mathrm{O}$
$M_{r}=606.44$
Monoclinic, $P 2_{1} / n$
$a=7.3195$ (7) A
$b=15.5186$ (14) \AA
$c=16.4240$ (15) A
$\beta=94.182$ (2) ${ }^{\circ}$
$V=1860.6(3) \AA^{3}$
$Z=4$
$D_{x}=2.165 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 6164
reflections
$\theta=1.8-31.5^{\circ}$
$\mu=8.71 \mathrm{~mm}^{-1}$
$T=90$ (2) K
Block, colorless
$0.24 \times 0.14 \times 0.10 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1997)
$T_{\text {min }}=0.229, T_{\text {max }}=0.421$
21761 measured reflections

$$
\begin{aligned}
& 6164 \text { independent reflections } \\
& 5404 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.035 \\
& \theta_{\max }=31.5^{\circ} \\
& h=-10 \rightarrow 10 \\
& k=-22 \rightarrow 22 \\
& l=-23 \rightarrow 23 \\
& \\
& \\
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0314 P)^{2}\right. \\
& \quad+0.1451 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.002 \\
& \Delta \rho_{\max }=1.64 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.81 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028$
$w R\left(F^{2}\right)=0.063$
$S=1.04$
6164 reflections
246 parameters
H -atom parameters constrained

Table 1

Selected geometric parameters ($\left(\AA^{\circ}\right)$.

$\mathrm{Re} 1-\mathrm{C} 3$	$1.898(3)$	$\mathrm{Re} 1-\mathrm{O} 4$	$2.182(2)$
$\mathrm{Re} 1-\mathrm{C} 1$	$1.907(3)$	$\mathrm{Re} 1-\mathrm{N} 1$	$2.239(3)$
$\mathrm{Re} 1-\mathrm{C} 2$	$1.910(4)$	$\mathrm{Re} 1-\mathrm{Br} 1$	$2.6409(4)$
			$98.41(12)$
$\mathrm{C} 3-\mathrm{Re} 1-\mathrm{C} 1$	$89.90(14)$	$\mathrm{C} 2-\mathrm{Re} 1-\mathrm{N} 1$	$88.56(9)$
$\mathrm{C} 3-\mathrm{Re} 1-\mathrm{C} 2$	$86.44(14)$	$\mathrm{O} 4-\mathrm{Re} 1-\mathrm{N} 1$	$94.30(11)$
$\mathrm{C} 1-\mathrm{Re} 1-\mathrm{C} 2$	$88.95(14)$	$\mathrm{C} 3-\mathrm{Re} 1-\mathrm{Br} 1$	$88.73(10)$
$\mathrm{C} 3-\mathrm{Re} 1-\mathrm{O} 4$	$176.30(12)$	$\mathrm{C} 1-\mathrm{Re} 1-\mathrm{Br} 1$	$177.57(10)$
$\mathrm{C} 1-\mathrm{Re} 1-\mathrm{O} 4$	$87.68(11)$	$\mathrm{C} 2-\mathrm{Re} 1-\mathrm{Br} 1$	$82.85(6)$
$\mathrm{C} 2-\mathrm{Re} 1-\mathrm{O} 4$	$96.31(11)$	$\mathrm{O} 4-\mathrm{Re} 1-\mathrm{Br} 1$	$83.86(7)$
$\mathrm{C} 3-\mathrm{Re} 1-\mathrm{N} 1$	$93.49(12)$	$\mathrm{N} 1-\mathrm{Re} 1-\mathrm{Br} 1$	
$\mathrm{C} 1-\mathrm{Re} 1-\mathrm{N} 1$	$172.06(12)$		

Table 2
Hydrogen-bonding geometry $\left(\AA{ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 5-\mathrm{H} 5 \cdots \mathrm{Br} 1^{\text {i }}$	0.82	2.54	3.296 (3)	153
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{O} 3^{\text {ii }}$	0.93	2.57	3.275 (4)	133
C5-H5A ${ }^{\text {O }}$ O $5^{\text {iii }}$	0.93	2.34	3.263 (5)	169
$\mathrm{C} 14-\mathrm{H} 14 \cdots \mathrm{O}^{\text {iv }}$	0.93	2.53	3.351 (4)	147

Symmetry codes: (i) $\frac{1}{2}+x, \frac{3}{2}-y, \frac{1}{2}+z$; (ii) $-1-x, 2-y,-z$; (iii) $x-1, y, z-1$; (iv)
$x-\frac{1}{2}, \frac{3}{2}-y, z-\frac{1}{2}$.

All H atoms were located in difference Fourier maps and refined as riding on their parent atoms $(\mathrm{C}-\mathrm{H}=0.93-0.97 \AA)$, with $U_{\text {iso }}(\mathrm{H})$ values of $1.2 U_{\text {eq }}$ (parent atom). A residual peak of electron density was located in the vicinity of the Re atom. However, the absorption correction could not be adjusted to further minimize this. Such residuals are not uncommon in structures containing atoms with large absorption coefficients.

Data collection: SMART (Bruker, 2000); cell refinement: SMART; data reduction: SAINT-NT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-NT (Bruker, 2000); software used to prepare material for publication: SHELXTL-NT.

The authors acknowledge the support of this work by a grant from the US Department of Energy (DOE), Office of Health and Environmental Research (grant No. D2-FG0299ER62791).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GA1088). Services for accessing these data are described at the back of the journal.

References

Alberto, R., Egli, A., Abram, U., Hegetschweiler, K., Gramlich, V. \& Schubiger, P. A. (1994). J. Chem. Soc. Dalton Trans. p. 2815.
Bakir, M. (2001). Acta Cryst. C57, 1371-1373.
Bakir, M. (2002). Acta Cryst. C58, m74-m76.
Banerjee, S. R., Levadala, M. K., Lazarova, N., Wei, L., Vallinat, J. F., Stephenson, K. A., Babich, J. W., Maresca, K. P. \& Zubieta, J. (2002). Inorg. Chem. 41, 6417.
Bruker (2000). SAINT-NT (Version 5.05), SMART (Version 5.05) and SHELXTL-NT (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.
Correia, J. D. G., Domingos, Â., Santos, I., Alberto, R. \& Ortner, K. (2001). Inorg. Chem. 40, 5147-5151.
Creber, M. L., Orrell, K. G., Osborne, A. G., Šik, V., Hursthouse, M. B. \& Malik, K. A. (2000). J. Chem. Soc. Dalton Trans. pp. 4218-4226.
Jiménez-Pulido, S. B., Sieger, M., Knödler, A., Heilmann, O., Wanner, M., Schwederski, B., Fiedler, J., Moreno-Carretero, M. N. \& Kaim, W. (2001). Inorg. Chim. Acta, 325, 65-72.
Li, X., Musie, G. T. \& Powell, D. R. (2003). Inorg. Chim. Acta, 355, 328-334.
Moya, S. A., Guerrero, J., Pastene, R., Schmidt, R., Sariego, R., Sartori, R., Sanz-Aparicio, J., Fonseca, I. \& Martinez-Ripoll, M. (1994). Inorg. Chem. 33, 2341.
Musie, G. T., Li, X. \& Powell, D. R. (2003). Inorg. Chim. Acta, 348, 69-74. Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97 and SADABS. University of Göttingen, Germany.
Wang, W., Spingler, B. \& Alberto, R. (2003). Inorg. Chim. Acta, 355, 386-393.
Wei, L., Banerjee, S. R., Levadala, M. K., Babich, J. \& Zubieta, J. (2004). Inorg. Chim. Acta, 357, 1499.

